Peter Achinstein and Explaining As An Activity
Achinstein notes that most accounts of scientific explanation have focused on the ‘product’ – the explanation itself, whether spoken or written – rather than on the act of explaining. He sets out to analyse explanation from the perspective of what human beings are doing when we explain.
An explanation is given by someone, with the purpose of helping someone else to understand. Achinstein explains it in slightly more technical language, but in brief he says that the purpose of an explanation is to have the audience know the correct answer to a question and know that it is a correct answer. We’ll leave aside the kinds of questions for which there is no correct answer, or many correct answers.
Achinstein describes explaining as an ‘illocutionary’ act. This is from a framework by Austin. Wikipedia sez: “In Austin’s framework, locution is what was said, illocution is what was meant, and perlocution is what happened as a result.”
Achinstein notes that the exact same sentence can be said with different intentions. An example he uses (I’ll paraphrase somewhat) is that when Dr Jones says “Bill ate spoiled meat”, he is giving an explanation of Bill’s stomach ache, and therefore the kind of illocutionary act he is undertaking is ‘explanation’. When Bill’s wife Jane says “Bill ate spoiled meat”, she is criticizing Bill’s dietary choices, so she is undertaking an illucutionary act of the kind ‘criticism’. This is true even though both people said the exact same words.
Achinstein suggests an ‘ordered pair’ approach, which can be described as (p, explaining q). ‘p’ is the explanation product itself – a sentence or proposition, and the second part of the brackets clarifies that someone said (or wrote) p in order to explain something, ‘q’. Dr Jones’ response might then be written as (“The reason that Bill has a stomach ache is that Bill ate spoiled meat”, explaining why Bill had a stomach ache).
By identifying what is going on in the explaining process, the explanation ‘product’ is clearer.
He considers the issue of evaluating explanations: a correct explanation may not be a good explanation in general terms, or it may not be a good explanation for a particular audience or a particular purpose. Achinstein talks about ‘instructions’ for explaining in a particular context.
Achinstein proposes the following criteria for the good-ness of an explanation:
- The audience does not already understand it
- There is a way to explain it that will allow the audience to know the correct answer and that it is a correct answer
- The audience is interested in the explanation
- It will be valuable for the audience to understand the explanation
There are a lot more details and issues, but the two key takeaways for me are (1) this approach is closer to my concerns with science teaching explanations than those of Hempel and Salmon because it centrally includes the explainer and the audience and (2) the challenges of teaching are with ensuring conditions (c) and (d) above – that our students are interested in the explanations we offer, and that the explanations we offer will be valuable for our students.
Note that (d) is not ‘the audience knows that it will be valuable to understand’. While that’s desirable, it is not essential, as long as the explainer knows it. But I would argue that it must be authentically in the interests of the audience (students, learners) to understand the explanation if we are to justify teaching it, and ‘valuable’ needs to mean something much more than passing an exam. The explanations we give in science teaching should transform worldviews and offer tangible benefits.